Corneal Biomechanical Assessment Using Corneal Visualization Scheimpflug Technology in Keratoconic and Normal Eyes
نویسندگان
چکیده
Purpose. To compare the corneal biomechanical properties of keratoconic patients and age-matched controls using corneal visualization Scheimpflug technology (Corvis ST). Methods. Sixty keratoconic eyes from 47 keratoconus patients and 60 normal eyes from 60 controls were enrolled in this prospective study. Tomography and biomechanical parameters of all eyes were obtained with the Pentacam and Corvis ST, respectively. Intraocular pressure was measured using a Goldmann applanation tonometer. Results. The tomography and biomechanical parameters of the keratoconic corneas were significantly different from those of the normal corneas except for the anterior chamber angle, first applanation length, the highest concavity time, and peak distance. The deformation amplitude was the best predictive parameter (area under the curve: 0.882), with a sensitivity of 81.7%, although there was a significant overlap between keratoconic and normal corneas that ranged from 1.0 to 1.4 mm. In both the keratoconus and control groups, the deformation amplitude was negatively correlated with intraocular pressure, central corneal thickness, and corneal volume at 3 and 5 mm. Conclusions. Corvis ST offers an alternative method for measuring corneal biomechanical properties. The possibility of classifying keratoconus based on deformation amplitude deserves clinical attention.
منابع مشابه
Ocular biomechanical measurements on post-keratoplasty corneas using a Scheimpflug-based noncontact device.
AIM To analyse ocular biomechanical properties, central corneal thickness (CCT) and intraocular pressure (IOP) in post-keratoplasty eyes, as compared to normal subjects, with a new Scheimpflug-based technology. Moreover, biomechanical data were correlated with the size and age of the donor and recipient corneas. METHODS Measurements were conducted on 46 eyes of 46 healthy patients without any...
متن کاملORA waveform-derived biomechanical parameters to distinguish normal from keratoconic eyes.
PURPOSE To evaluate the ability of the Ocular Response Analyzer (ORA; Reichert Ophthalmic Instruments, Buffalo, NY) to distinguish between normal and keratoconic eyes, by comparing pressure and waveform signal-derived parameters. METHODS This retrospective comparative case series study included 112 patients with normal corneas and 41 patients with bilateral keratoconic eyes. One eye from each...
متن کاملKeratoconus diagnosis using Corvis ST measured biomechanical parameters
PURPOSE To assess the diagnostic power of the Corneal Visualization Scheimpflug Technology (Corvis ST) provided corneal biomechanical parameters in keratoconic corneas. METHODS The following biomechanical parameters of 48 keratoconic eyes were compared with the corresponding ones in 50 normal eyes: time of the first applanation and time from start to the second applanation [applanation-1 time...
متن کاملAssessment of Corneal Biomechanical Properties by CorVis ST in Patients with Dry Eye and in Healthy Subjects
Purpose. To investigate corneal biomechanical properties in patients with dry eye and in healthy subjects using Corneal Visualization Scheimpflug Technology (CorVis ST). Methods. Biomechanical parameters were measured using CorVis ST in 28 eyes of 28 patients with dry eye (dry eye group) and 26 normal subjects (control group). The Schirmer I test value, tear film break-up time (TBUT), and corne...
متن کاملCorneal biomechanical data and biometric parameters measured with Scheimpflug-based devices on normal corneas.
AIM To analyze the correlations between ocular biomechanical and biometric data of the eye, measured by Scheimpflug-based devices on healthy subjects. METHODS Three consecutive measurements were carried out using the corneal visualization Scheimpflug technology (CorVis ST) device on healthy eyes and the 10 device-specific parameters were recorded. Pentacam HR-derived parameters (corneal curva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014